SUPER-MAGIC COMPLETE *k*-PARTITE HYPERGRAPHS

MARIÁN TRENKLER

Graphs and Combinatorics 17(2001), 171-175

Abstract.

We deal with complete k-partite hypergraphs and we show that for all $k \ge 2$ and $n \ne 2, 6$ its hyperedges can be labeled by consecutive integers $1, 2, \ldots, n^k$ such that the sum of labels of the hyperedges incident to (k - 1) particular vertices is the same for all (k - 1)-tuples of vertices from (k - 1) independent sets.

By a complete k-partite hypergraph \mathbf{H}_{n}^{k} we mean a hypergraph with kn vertices divided into k independent sets each with n vertices and n^{k} hyperedges having exactly k vertices. (Note. We obtain \mathbf{H}_{n}^{k} from a complete k-partite graph $\mathbf{K}_{n,n,\dots,n}$ by replacing all the edges of its every complete subgraph \mathbf{K}_{k} by a hyperedge.) A hypergraph \mathbf{H}_{n}^{k} is magic if the hyperedges can be labeled with different positive integers such that the sum of labels of the hyperedges incident to (k-1) particular vertices is the same for all (k-1)-tuples of vertices from (k-1) independent sets. Moreover, if the labels are consecutive integers $1, 2, \dots, n^{k}$ then \mathbf{H}_{n}^{k} is called super-magic. A super-magic hypergraph \mathbf{H}_{n}^{k} we denote by \mathbf{M}_{n}^{k} and its hyperedge $(i_{1}, i_{2}, \dots, i_{k})$ with its label we denote by $\mathbf{m}(i_{1}, i_{2}, \dots, i_{k})$. In a similar way we can define a magic (or super-magic) hypergraph and its special case a magic (or super-magic) graph.

Magic graphs were introduced by J.Sedláček. Necessary and sufficient conditions for the existence of a magic graph can be found in [4] and [5]. B.M.Stewart [7] has proved that for all $n \neq 0 \mod 4$ and n > 5 the complete graph \mathbf{K}_n is super-magic. It is easy to see that the classic concept of a magic square corresponds to the fact that the complete bipartite graph $\mathbf{K}_{n,n}$ is super-magic for all $n \neq 2$. J.Sedláček [6] considered the graph \mathbf{M}_{2n} (also called the Möbius ladder) and constructed a super-magic labeling for odd n > 3. Super-magic labelings for some classes of regular graphs of degree 4 were described in [1] and [3].

Super-magic complete bipartite graphs $\mathbf{K}_{n,n}$ generalize to super-magic complete kpartite hypergraphs \mathbf{M}_n^k . The aim of this paper is to prove the following theorem.

Theorem.

If $n \neq 2, 6$ and $k \geq 2$ are positive integers, then the complete k-partite hypergraph \mathbf{H}_n^k is super-magic.

Before we prove our result we consider Latin squares and a Latin hypergraph.

MARIAN TRENKLER

A Latin square $\mathbf{R}_n | \mathbf{r}(i, j); 1 \leq i, j \leq n |$ of order n is a square matrix of order n such that every row and column is a permutation of the set of natural numbers $\{1, 2, \ldots, n\}$. Two Latin squares $\mathbf{R}_n | \mathbf{r}(i, j) |$ and $\mathbf{S}_n | \mathbf{s}(i, j) |$ of order n are called orthogonal, if all n^2 ordered pairs $[\mathbf{r}(i, j), \mathbf{s}(i, j)]$, where $i, j \in \{1, 2, \ldots, n\}$, are different. In [2] it is proved that two orthogonal Latin squares of order n exist if and only if $n \neq 2, 6$. We will use this statement to prove our theorem. A hypergraph \mathbf{H}_k^n is called Latin if the hyperedges are labeled by integers $1, 2, \ldots, n$ such that labels of the hyperedges incident to (k - 1) particular vertices are integers $1, 2, \ldots, n$. A Latin hypergraph \mathbf{H}_n^k we denote by \mathbf{U}_n^k and its hyperedge (i_1, i_2, \ldots, i_k) with its label we denote by $\mathbf{u}(i_1, i_2, \ldots, i_k)$.

On Figure are the labels of hyperedges of \mathbf{M}_3^4 . In the [3(b-1) + d]-th row and the [3(a-1) + c]-th column is the label $\mathbf{m}(a, b, c, d)$ of the hyperedge which joins the *a*-th vertex of the first part of vertices, the *b*-th vertex of the second part, the *c*-th vertex of the third part and the *d*-th vertex of the fourth part.

46	8	69	17	78	28	60	37	26
62	42	19	51	1	71	10	80	33
15	73	35	55	44	24	53	6	64
59	39	25	48	7	68	16	77	30
12	79	32	61	41	21	50	3	70
52	5	66	14	75	34	57	43	23
18	76	29	58	38	27	47	9	67
49	2	72	11	81	31	63	40	20
56	45	22	54	4	65	13	74	36

FIGURE

This labeling of \mathbf{M}_3^4 was made using the following formula (it is true for all odd n and k = 4)

$$\begin{aligned} \mathbf{m}(i_1, i_2, i_3, i_4) &= [(i_1 - i_2 + i_3 - i_4 + \frac{n-1}{2}) \mod n] n^3 \\ &+ [(i_1 - i_2 + i_3 + i_4 - \frac{n+3}{2}) \mod n] n^2 \\ &+ [(i_1 - i_2 - i_3 - i_4 + \frac{3n+1}{2}) \mod n] n \\ &+ [(i_1 + i_2 + i_3 + i_4 - \frac{3n+5}{2}) \mod n] + 1 \end{aligned}$$

This formula was derived from the construction in the proof of our theorem.

Proof of the theorem. A super-magic hypergraph \mathbf{M}_1^k has only one edge. Just as a magic square of order 2 does not exist \mathbf{M}_2^k does not exist either and therefore we suppose that $n \geq 3$

We prove the theorem by a construction of \mathbf{M}_n^k for all integers $3 \le n \ne 6$ and $k \ge 3$. We use mathematical induction on k. \mathbf{U}_n^2 is a Latin square of order n and \mathbf{M}_n^2 is a super-magic complete bipartite graph $\mathbf{K}_{n,n}$.

We suppose that $\mathbf{U}_n^{k-1}|\mathbf{u}(i_1, i_2, \dots, i_{k-1})|$ and $\mathbf{M}_n^{k-1}|\mathbf{m}(i_1, i_2, \dots, i_{k-1})|$ are already constructed. We define a Latin hypergraph $\mathbf{U}_n^k|\mathbf{u}(i_1, i_2, \dots, i_k)|$ and a super-magic complete

k-partite hypergraph $\mathbf{M}_n^k |\mathbf{m}(i_1, i_2, \dots, i_k)|$ for all $1 \leq i_1, i_2, \dots, i_k \leq n$ by the following relations

$$\mathbf{u}(i_1,i_2,\ldots,i_k) = \mathbf{u}(i_1,i_2,\ldots,i_{k-2},\mathbf{r}(i_{k-1},i_k)) \qquad \text{and}$$

 $\mathbf{m}(i_1, i_2, \dots, i_k) = [\mathbf{u}(i_1, i_2, \dots, i_{k-2}, \mathbf{r}(i_{k-1}, i_k)) - 1]n^{k-1} + \mathbf{m}(i_1, i_2, \dots, i_{k-2}, \mathbf{s}(i_{k-1}, i_k)).$

In four steps we prove:

- (a) \mathbf{U}_n^k is a Latin \mathbf{H}_n^k , (b) hyperedges of \mathbf{M}_n^k are labels from the set $\{1, 2, \dots, n^k\}$,
- (c) no two labels of hyperedges of \mathbf{M}_n^k are equal,
- (d) sums of labels of hyperedges incident with (k-1) vertices \mathbf{M}_n^k are equal.
- (a) Because \mathbf{R}_n is a Latin square both sets

$$\{\mathbf{r}(x, i_k) : x = 1, 2, \dots, n\}$$
 and $\{\mathbf{r}(i_{k-1}, x) : x = 1, 2, \dots, n\}$

are equal to the set $\{1, 2, \ldots, n\}$ and therefore

{ $\mathbf{u}(i_1, i_2, \dots, i_{k-2}, \mathbf{r}(x, i_k) : x = 1, 2, \dots, n$ } and { $\mathbf{u}(i_1, i_2, \dots, i_{k-2}, \mathbf{r}(i_{k-1}, x) : x = 1, 2, \dots, n$ }

are equal to the set $\{1, 2, \ldots, n\}$. Because \mathbf{U}_m^{k-1} is a Latin hypergraph it follows that the labels of

$$\{\mathbf{u}(i_1, i_2, \dots, i_{j-1}, x, i_{j+1}, \dots, i_{k-2}, \mathbf{r}(i_{k-1}, i_k)) : x = 1, 2, \dots, n\}$$

is equal to the set $\{1, 2, ..., n\}$ for j = 1, 2, 3, ..., k - 2.

(b) All labels of hyperedges of \mathbf{U}_n^k are from the set $\{1, 2, \ldots, n\}$ and all labels of hyperedges of \mathbf{M}_n^{k-1} are from the set $\{1, 2, \ldots, n^{k-1}\}$. It follows immediately that for all labels of hyperedges of \mathbf{M}_n^k we have

$$1 \leq \mathbf{m}(i_1, i_2, \dots, i_k) \leq n^k$$
 for all $1 \leq i_1, i_2, \dots, i_k \leq n$.

(c) Let us suppose that $\mathbf{m}(i_1, i_2, \ldots, i_k) = \mathbf{m}(i'_1, i'_2, \ldots, i'_k)$. We show that this implies $(i_1, i_2, \dots, i_k) = (i'_1, i'_2, \dots, i'_k).$

From the definition of \mathbf{M}_n^k it follows

$$\begin{aligned} & [\mathbf{u}(i_1, i_2, \dots, i_{k-2}, \mathbf{r}(i_{k-1}, i_k)) - 1]n^{k-1} + \mathbf{m}(i_1, i_2, \dots, i_{k-2}, \mathbf{s}(i_{k-1}, i_k)) = \\ & [\mathbf{u}(i'_1, i'_2, \dots, i'_{k-2}, \mathbf{r}(i'_{k-1}, i'_k)) - 1]n^{k-1} + \mathbf{m}(i'_1, i'_2, \dots, i'_{k-2}, \mathbf{s}(i'_{k-1}, i'_k)). \end{aligned}$$

By rearranging this equality we get

$$[\mathbf{u}(i_1, i_2, \dots, i_{k-2}, \mathbf{r}(i_{k-1}, i_k)) - \mathbf{u}(i'_1, i'_2, \dots, i'_{k-2}, \mathbf{r}(i'_{k-1}, i'_k))]n^{k-1} = \mathbf{m}(i'_1, i'_2, \dots, i'_{k-2}, \mathbf{s}(i'_{k-1}, i'_k)) - \mathbf{m}(i_1, i_2, \dots, i_{k-2}, \mathbf{s}(i_{k-1}, i_k)).$$
(1)

The left hand side of (1) is a multiple of n^{k-1} and the right side is a difference of labels of two hyperedges of \mathbf{M}_n^{k-1} which is not a non-zero multiple of n^{k-1} . From (1) it follows that

$$\mathbf{u}(i_1, i_2, \dots, i_{k-2}, \mathbf{r}(i_{k-1}, i_k)) = \mathbf{u}(i'_1, i'_2, \dots, i'_{k-2}, \mathbf{r}(i'_{k-1}, i'_k))$$
(2)

and

$$\mathbf{m}(i_1, i_2, \dots, i_{k-2}, \mathbf{s}(i_{k-1}, i_k)) = \mathbf{m}(i'_1, i'_2, \dots, i'_{k-2}, \mathbf{s}(i'_{k-1}, i'_k)).$$
(3)

In \mathbf{M}_n^{k-1} no two hyperedges have the same labels and therefore from (3) it follows that

$$i_1 = i'_1, \quad i_2 = i'_2, \dots, \quad i_{k-2} = i'_{k-2}$$
 and
 $\mathbf{s}(i_{k-1}, i_k) = \mathbf{s}(i'_{k-1}, i'_k).$ (4)

By substitution of the first (k-2) equalities in (2) we get

$$\mathbf{u}(i_1, i_2, \dots, i_{k-2}, \mathbf{r}(i_{k-1}, i_k)) = \mathbf{u}(i_1, i_2, \dots, i_{k-2}, \mathbf{r}(i'_{k-1}, i'_k)).$$
(5)

Because U_n^{k-1} is a Latin hypergraph, from the equality of the first (k-2) indices in (5) it follows that

$$\mathbf{r}(i_{k-1}, i_k) = \mathbf{r}(i'_{k-1}, i'_k).$$
(6)

From the assumption that \mathbf{R}_n and \mathbf{S}_n are orthogonal Latin squares and (4), (6) we get $i_{k-1} = i'_{k-1}$ and $i_k = i'_k$ which completes (c).

(d) For every $j = 1, 2, \ldots, k$ we have

$$\sum_{i_j=1}^{n} \mathbf{m}(i_1, i_2, \dots, i_{k-2}, i_{k-1}, i_k) = \sum_{i_j=1}^{n} [\mathbf{u}(i_1, i_2, \dots, i_{k-2}, \mathbf{r}(i_{k-1}, i_k)) - 1] n^{k-1} + \sum_{i_j=1}^{n} \mathbf{m}(i_1, i_2, \dots, i_{k-2}, \mathbf{s}(i_{k-1}, i_k)) = [\frac{n(n+1)}{2} - n] n^{k-1} + \frac{n(n^{k-1}+1)}{2} = \frac{n(n^k+1)}{2}.$$

This completes the proof.

Remark. The above construction of \mathbf{M}_n^k is based on the use of two orthogonal Latin squares and therefore it is not valid for n = 2, 6.

References

- 1. Bača, M., Holländer, I., Lih, K-W., Two classes of super-magic graphs, JCMCC 23 (1997), 113-120.
- 2. Bose, R.C., Shrikhande, S.S., Parker, E.T., Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture, Can. J. Math. 12 (1960), 189–203.
- 3. Ivančo, J., On supermagic regular graphs, Math. Bohemica 125 (2000), 99-114.
- 4. Jeurissen, R.H., Magic graphs, a characterization, Europ. J. Combinatorics 9 (1988), 363-368.
- Jezný, S., Trenkler, M., Characterization of magic graphs, Czechoslovak Math. Jour. 33 (1983), 435-438.
- 6. Sedláček, J., On magic graphs, Math. Slovaca 26 (1976), 329-335.
- 7. Stewart, B.M., Supermagic complete graphs, Can. Jour. Math. 19 (1967), 427-438.

ŠAFÁRIK UNIVERSITY, JESENNÁ 5, 041 54 KOŠICE, SLOVAKIA *E-mail address*: trenkler@science.upjs.sk